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We present a study of different models of local disorder in graphene. Our focus is on the main effects that
vacancies (random, compensated, and uncompensated), local impurities, and substitutional impurities bring
into the electronic structure of graphene. By exploring these types of disorder and their connections, we show
that they introduce dramatic changes in the low energy spectrum of graphene, viz., localized zero modes,

strong resonances, gap and pseudogap behaviors, and nondispersive midgap zero modes.
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I. INTRODUCTION

Graphene is poised to become a new paradigm in solid
state physics and materials science, owing to its truly bidi-
mensional character and a host of rich and unexpected
phenomena.'=? These have cascaded into the literature in the
wake of the seminal experiments that presented a relatively
easy route toward the isolation of graphene crystals.*

Carbon is a very interesting element, on account of its
chemical versatility: It can form more compounds than any
other element.’ Its valence orbitals are known to hybridize in
many different forms such as spl, sp2, sp3, etc. As a conse-
quence, carbon can exist in many stable allotropic forms,
characterized by the different relative orientations of the car-
bon atoms. Carbon binds through covalence and leads to the
strongest chemical bonds found in nature. Common to the
most interesting forms of carbon is the so-called graphene
sheet, a single plane of sp? carbon organized in a honeycomb
lattice [Fig. 1(a)]. Graphite, for instance, is made of stack-
ings of graphene planes, nanotubes from rolled graphene
sheets, and fullerenes are wrapped graphene. Yet, for many
years, it was believed that graphene itself would be thermo-
dynamically unstable. This presumption has been overturned
by a series of remarkable experiments in which truly bidi-
mensional (one atom thick) sheets of graphene have been
isolated and characterized.* This means that studies of the
two-dimensional (2D) (Dirac) electron gas can now be per-
formed on a truly 2D crystal, as opposed to the traditional
measurements made at interfaces as in metal-oxide-
semiconductor field-effect transistor and other structures.®

The crystalline simplicity of graphene—a plane of sp>
hybridized carbon atoms arranged in a honeycomb
lattice—is deceiving. The characteristics of the honeycomb
lattice make graphene a half-filled system with a DOS that
vanishes linearly at the neutrality point, and an effective,
low-energy quasiparticle spectrum characterized by a disper-
sion which is linear in momentum’ close to the Fermi energy.
These two features underlie the unconventional electronic
properties of this material, whose quasiparticles behave as
Dirac massless chiral electrons.® Consequently, many phe-
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nomena of the realm of QED find a practical realization in
this solid state material. They include the minimum conduc-
tivity when the carrier density tends to zero;’ the new half-
integer quantum Hall effect (measurable up to room
temperature),” Klein tunneling,'” strong overcritical positron-
like resonances in the Coulomb scattering cross section
analogous to supercritical nuclei in QED,''!? the Zitter-
bewegung in confined structures;'3 anomalous Andreev
reflections,'*!> and negative refraction'® in p-n junctions.

Arguably, the most interesting and promising properties
from the technological point of view are its great crystalline
quality, high mobility, and resilience to very high current
densities,! the ability to tune the carrier density through a
gate voltage,* the absence of backscattering,'” and the fact
that graphene exhibits both spin and valley degrees of free-
dom which might be harnessed in envisaged spintronic!®!?
or valleytronic devices.?’

Disorder, ever present in graphene owing to its exposed
surface and the substrates, is the central concern of this pa-
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FIG. 1. (Color online) In (a), a; and a, are the primitive vectors
that define the WS unit cell highlighted as the dashed hexagon. The
lattice parameter a is =1.4 A. The first BZ of the associated recip-
rocal lattice is shown in (b), together with the points of high sym-
metry I" and M and the two nonequivalent K and K'.
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per. In particular, we focus on the effects of vacancies and
random impurities in the electronic structure of bulk
graphene. The models examined below apply to situations in
which carbon atoms are extracted from the graphene plane
(e.g., through irradiation®'"??), in which adatoms and/or ad-
sorbed species attach to the graphene plane,”® or in which
some carbon atoms are chemically substituted for other ele-
ments. They are, therefore, models of local disorder. We do
not consider explicitly other sources of disorder such as
rough edges or ripples,?* or the dramatic effects of Coulomb
impurities, which have been discussed elsewhere.!!?> In this
paper we expand the discussion of vacancies initiated in Ref.
26, using the same techniques, and discuss the consequences
of local disorder originally presented in Ref. 27. Numeri-
cally, we resort to exact diagonalization calculations and to
the recursion method.?®? The latter allows the calculation of
the DOS and other spectral quantities for very large system
sizes with disorder. In our case, the calculations below refer
to honeycomb lattices with 4 X 10° carbon atoms, a size al-
ready of the order of magnitude of the real samples, if not
larger for some experiments.

The paper is organized as follows. In Sec. II we present
the basic electronic properties of electrons in the honeycomb
lattice, mostly to introduce the notation and the details rel-
evant for the subsequent discussions. In Sec. IIl we present
our results regarding the different models of disorder. This
section is subdivided according to the different models of
disorder studied: vacancies in Secs. III A and III B, local
impurities in Sec. III C, and substitutional impurities in Sec.
I D. The discussion of the results is kept within each sub-
section and the principal findings of this paper are high-
lighted in Sec. IV.

II. ELECTRONS IN A HONEYCOMB LATTICE

Graphene consists of carbon atoms organized into a hon-
eycomb lattice, bonded through covalence between two sp?
orbitals of neighboring atoms [Fig. 1(a)]. The graphene plane
is defined by the plane of the sp? orbitals. The saturation of
the resulting o bonding orbitals leaves an extra electron at
the remaining 2p, orbital per carbon atom. Ideal graphene
has therefore a half-filled electronic ground state.

The Bravais lattice that underlies the translation symme-
tries of the honeycomb lattice is the triangular lattice, whose
primitive vectors a, and a, are depicted in Fig. 1(a). One of
the consequences is the existence of two atoms per unit cell
that define two sublattices (A and B in the figure): Indeed, the
honeycomb lattice can be thought as two interpenetrating
triangular lattices. This bipartite nature of the crystal lattice,
added to the half-filled band, imposes an important particle-
hole symmetry, as will be discussed later.

The electronic structure of graphene can be captured
within a tight-binding approach, in which the electrons are
allowed to hop between immediate neighbors with hopping
integral 1=2.7 eV, and also between next-nearest neighbors
with an additional hopping #’,

H=—1t>, c;rcj—t' E c,ch+H.c. (1)
(@) (e

The presence of the second term introduces an asymmetry
between the valence and conduction bands, thus violating
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FIG. 2. (Color online) (a) Band structure along the symmetry
directions in the reciprocal BZ of the honeycomb lattice. (b) Band
structure of graphene (¢'=0) with the two bands touching at the K
and K’ points of the BZ.

particle-hole symmetry. To emphasize the two sublattice
structure of the honeycomb, we can write the Hamiltonian as

_ t ¥ i
H=-1 E ajbis—t E bjaj,s—1 E a;ai A
ieA,d ieB,d ieAA

—1' X bibia, (2)
ieB,A

with operators a; and b; pertaining to sublattices A and B,
respectively. The vectors 6 connect atom i to its immediate
neighbors, whereas the A connect atom i to its six second

neighbors. Fourier transforming Eq. (2) and introducing a
spinor notation for the sublattice amplitudes lead to
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Since the spin degree of freedom does not play a role in our
discussion other than through a degeneracy factor, it will
been omitted, for simplicity. The functions €,(k) and e,(k)
read

al=-rS ™ @)

e(k)=-12 1ok,
5 A

-
- V3 3
€ (k) = - 2t" cos(V3k,a) — 4t' cos Ekya cos Ekxa ,

3 3
le;(k)|? =38 + 272 cos(\r’gkya) +47 cos(%kw)cos(—kxa) ,

2
(5)

where €,(k) alone is the dispersion relation of a triangular
lattice and yield, after diagonalization of Eq. (3), the disper-
sion relations for graphene,

el ©)

E-(k) = &(k) = || \[3- =

The two bands E.(k) are represented in Fig. 2(b) in the
domain k, , e [-m,7]. This unusual band structure makes
graphene very peculiar with valence and conduction bands
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FIG. 3. (Color online) DOS associated with Eq. (6) for different
values of the next-nearest-neighbor hopping #’.

touching at the Fermi energy, at a set of points at the edge of
the first Brillouin zone, equivalent to the points K and K’ by
suitable reciprocal lattice translations. Its low energy physics
is dictated by the dispersion around those two nonequivalent
points, which turns out to be linear in k. In fact, expanding
Eq. (5) around either

4 \E 1 . 4w \6 1
= = -, or K'= — AT S (7)
3V3al\ 2 2 3V3a\ 2 2

one gets the so-called K- p effective band structure,’
E(K+q)==31" * g+ O(¢?), ®)

with a Fermi velocity vy (Avy= vp=3ta/2, and we take units
in which 2=1 and r=1). When ' =0, the dispersion is purely
conical, as in a relativistic electron in 2D. For this reason, the
two cones tipped at K and K’ are known as Dirac cones. The
low-energy, continuum limit of Eq. (2) is given by

H=vpjd2r1p+(r)5-ﬁ¢(r), 9)

where ¢(r) is a two-dimensional spinor obeying the Dirac
equation in two dimensions.*°

Some quantitative aspects of graphene’s band structure
[Eq. (6)] are plotted in Figs. 2 and 3 In Fig. 2(a), the band
dispersion is plotted along the symmetry directions of the
Brillouin zone (BZ) indicated in Fig. 1(b), and in Fig. 3, the
DOS for different values of the nearest-neighbor hopping ¢’
are plotted. Focusing on the particle-hole symmetric case (¢
=0), it is clear that, besides the marked van Hove singulari-
ties at E= *¢, the most important feature is the linear van-
ishing of the DOS at the Fermi level, a fact that is at the
origin of many transport anomalies in this material.>!

Particle-hole symmetry in this problem arises from the
bipartite nature of the honeycomb lattice and is a general
property of systems whose underlying crystal lattice has this
nature. When we have a bipartite lattice, the basis vectors of
the Hilbert space can be ordered so that, for any ket, |¢), the
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amplitudes in sublattice A come first. For example, if
{d)i, q‘)ﬁ, ,d)ﬁ} are the Wannier functions for the orbitals in
sublattice A and {¢g, $5, ..., PN} the ones in sublattice B,
then our ordered basis could be {d)/l;, e gbﬁ'; ¢}3, o d)lg}. If
the Hamiltonian includes hopping only between nearest
neighbors, this means that it only promotes itinerancy be-
tween different sublattices. The stationary Schrodinger equa-
tion then reads, in matrix block form in the ordered basis,

0 hup\[ea Pa
(hJ;B 0 )((PB)=E<(PB>. (10)

Expanding, we get

happp=E@y

A = (h}ghap)op = E*@p, (11)
hAB‘PA =Eopp

and therefore, if E is an eigenstate, so is —E. For a half-filled
system, the elementary excitations around the Fermi sea can
be thought, as usual, as particle-hole pairs. Since in that case
Er=0, particles and holes have symmetric dispersions. This
is completely analogous to the situation found in simple
semiconductors or semimetals, although matters are slightly
more complicated in graphene because there are two degen-
erate points, K and K’, in the BZ. Thus, there will be two
families of particle and hole excitations: one associated with
the Dirac cone at K and the other with the cone at K, like in
a multivalley semiconductor.

III. LOCAL DISORDER IN GRAPHENE

Disorder is present in any real material, graphene being
no exception. In fact, true long-range order in two dimen-
sions implies a broken continuous symmetry (translation),
which violates the Hohenberg—Mermin—Wagner
theorem.>>33 So, by this reason alone, defects must be
present in graphene and, in a sense, as paradoxical as it
might sound, are presumably at the basis of its thermody-
namic stability.

However, the study of disorder effects on graphene is mo-
tivated by more extraordinary experimental results. One of
them is the study undertaken in Refs. 21 and 22 in which
highly oriented pyrolytic graphite samples were irradiated
via high-energy proton beams. As a result, the experiments
revealed that the samples acquired a magnetic moment, dis-
playing long-range ferromagnetic order up to temperatures
much above 300 K. This triggered enormous interest since
the technological possibilities arising from organic magnets
are many and varied. Furthermore, carbon, being the most
covalent of the elements, has a strong tendency to saturate its
shell in its allotropes and is somehow the antithesis of mag-
netism. Besides the moment formation, it was found that the
magnitude of the saturation moment registered in hysteresis
curves was progressively increased with successive irradia-
tions. This is strong evidence that the defects induced by the
proton beam are playing a major role in this magnetism. In
this context, the study of defects and disorder in graphene
gains a significant pertinence.

In the following paragraphs, we will unveil some details
and peculiarities that emerge from different models of disor-
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der applied to free electrons in the honeycomb lattice.

A. Vacancies

Vacancies are one of the defects more likely to be induced
in the graphene structure by proton irradiation. A vacancy is
simply the absence of an atom at a given site. When an atom
is removed, two scenarios are possible: either the disrupted
bonds remain as dangling bonds or the structure undergoes a
bond reconstruction in the vicinity of the vacancy, with sev-
eral possible outcomes.?* In either case, a slight local distor-
tion of the lattice is expected. In the following discussion,
however, it is assumed that, as first approximation, the cre-
ation of a vacancy has the sole effect of removing the m,
orbital at a lattice point, together with its conduction band
electron. In this sense, the physics of the conduction band
electrons is still described by the Hamiltonian (1), where
now the hopping to the vacancy sites is forbidden.

1. Vacancies, uncompensated lattices, and a theorem

Vacancies have an interesting consequence when ¢'=0. If
the distribution of vacant sites is uneven between the two
sublattices, zero energy modes will necessarily appear. This
follows from a theorem in linear algebra® and can be seen as
follows. Assume, very generally, that we have a bipartite
lattice, with sublattices A and B (It can be any bipartite lat-
tice like the square or honeycomb lattices in two dimensions,
cubic in three dimensions, etc.), and that the number of or-
bitals and/or sites in A (B) is N4 (Ng). Just as we did before,
the basis vectors of the Hilbert space can always be ordered
so that any ket |¥) has the amplitudes on sublattice A ap-
pearing first, followed by the amplitudes on sublattice B,

|\If> = ((PA’(PB) = (¢}4a¢i’ ey IIZA’d)]l}’ ¢%, e ’(ﬁgB)'
(12)
We now consider a Hamiltonian containing only nearest-
neighbor hopping, plus some local energy (e,,€z) on each
sublattice. The corresponding stationary Schrodinger equa-

tion will then be (in matrix block form that respects the
ordering of the basis)

&ly, h
H|‘1’>=E|‘I’>H( R )(‘PA>=E(‘DA), (13)
hyg GBHNB ¢B ¢B

where 1,; is the M X M identity matrix, hyz a Ny X Ng ma-
trix, and ¢4 (¢@g) a vector in a subspace of dimension N
(Np).

To analyze the spectrum, we note that

heg= (E- 8A)‘PA,

hiey=(E-&p)@p, (14)
which, from cross substitution, implies that
hThQDB= (E_SA)(E_SB)(PB~ (15)

If we call \? to the (non-negative) eigenvalues of A'h, the
spectrum of H is then
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E=8A+8Bi
2

(SA;‘SB)HG. (16)

The symmetry about (g4+&5)/2 simply reflects the particle-
hole symmetry.

States of a peculiar nature should appear when the num-
ber of sites in each sublattice is different. Without any loss of
generality, we take N4> Nj. Since the block /45 in Eq. (13)
is a linear application from a vector space having dim(A)
=N, onto a vector space B with dim(B) =Ny, it follows from
basic linear algebra that

(a) rank(/yp) =rank(h; 5)=Npg;

(b) hyp=¢p=0 has no solutions other than the trivial one;
and

(c) I, 34=0 has nontrivial solutions that we call ¢}.

From the rank-nullity theorem,
rank(h} ;) + nullity(h} ;) = N, (17)

and hence the null space of 4}, has dimension: nullity(/} )
=N,—Np. Consequently, there are states of the form

W0 = (¢};0),

in which ¢ satisfies /2, ;=0 that are eigenstates of  with
eigenvalue g,

h0 = (g4 —&4)Pa

(18)
W@y = (4= £5)0.

H|¥O) = E[V) {
Furthermore, since nullity(/zz)=N,—Nj implies the exis-
tence of Ny—Njp linearly independent gog, this eigenstate has
a degeneracy of Ny—Njp. It should be stressed that a state of
the form (¢,;0) has only amplitude in the A sublattice.
Therefore, the following theorem is established: Whenever
the two sublattices are not balanced with respect to their
number of atoms, there will appear N,—Np states with en-
ergy E=¢g,, all linearly independent and localized only on
the majority sublattice. In addition, one can modify sublat-
tice B in any way (remove more sites, for instance) that these
zero modes will remain undisturbed.

We remark that in the above, the details of the hopping
matrix h,p were not specified and need not be. The result
holds in general, provided that the hopping induces transi-
tions between different sublattices only, and that the diagonal
energies are constant (diagonal disorder is excluded).

2. Zero modes

The case with e,=¢e5=0 is of obvious relevance for us
since our model for pristine graphene does not include any
local potentials. In this situation, the above results imply that
introducing a vacancy in an otherwise perfect lattice imme-
diately creates a zero energy mode. Now, this is important
because those states are created precisely at the Fermi level,
and have this peculiar topological localization determining
that they should live in just one of the lattices.

Even more interestingly, it is possible to obtain the exact
analytical wave function associated with the zero mode in-
duced by a single vacancy in a honeycomb lattice. This was
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done by the authors and collaborators in Ref. 26 and will not
be repeated here. We only mention that the wave function
can be constructed by an appropriate matching of the zero
modes of two semi-infinite and complementary ribbons of
graphene, and that, in the continuum limit, the wave function
of the zero mode introduced by one vacancy has the form?®

iK'-r KT
+

wmw:e

: (19)
X+1y

x—iy
The important point is that the amplitude of this state decays
with the distance to the vacancy as ~1/r and thus has a
quasilocalized character, although strictly not normalizable,
and such quasilocalized state appears exactly at the Fermi
level.

Should another vacancy be introduced in the same sublat-
tice, another zero mode will appear. However, the nature of
the two zero modes will depend whether the vacancies are
close or distant. In the latter case, the hybridization between
the two modes should be small on account of the 1/r decay,
and we can expect two states of form (19) about each va-
cancy site. Of course, significant effects in the thermody-
namic limit can only arise with a finite concentration of va-
cancies, and for such analysis, we undertook the numerical
calculations described next.

3. Numerical results: Single vacancy

The first calculation is the numerical verification of the
exact analytical result for the localized state in Eq. (19). For
that, we consider the tight-binding Hamiltonian (1) and cal-
culate numerically, via exact diagonalization, the full spec-
trum and eigenstates in the presence of a single vacancy. For
some typical results, we turn our attention to Fig. 4. There,
we plot a real-space representation of some selected wave
functions. This has been done by drawing a circle at each
lattice site, whose radius is proportional to the wave function
amplitude at that site, and whose color (red/blue) reflects the
sign (+/—) of the amplitude at each site. Thus, bigger circles
mean higher amplitudes. In the first panel [Fig. 4(a)], we are
showing the eigenstate with lowest, yet nonzero, absolute
energy. It is visible that the wave function associated with
such state spreads uniformly across the totality of the system
such as a plane wave. In the second panel [Fig. 4(b)], we
draw the wave function of the state E=0, which corresponds
to Eq. (19). The state is clearly decaying as the distance to
the central vacancy increases. In addition, the state exhibits
the full C; point symmetry about the vacant site, just as
expected. This picture provides a snapshot of the lattice
version?® of Eq. (19). Since only one vacancy was intro-
duced, the state shown in Fig. 4(b) is the only zero mode
present.

When particle-hole symmetry is disturbed by a nonzero
t', we still find states having this quasilocalized nature,
where the wave function amplitude is still quite concentrated
about the vacancy. Two examples are shown in panels Figs.
4(b) and 4(c). They are two eigenstates with neighboring
energy calculated for the same system. An important differ-
ence occurs here, in that, unlike the case t'=0 where only
one localized state appears, the particle-hole asymmetric case
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FIG. 4. (Color online) Selected eigenstates in a graphene sheet
with 807 atoms containing a single impurity at the center (black
dot). Only the region near the vacancy is shown. (a) The eigenstate
with energy closest, but different, to zero. (b) The eigenstate with
E=0. (c) and (d) show the presence of two quasilocalized eigen-
states even with r=0.2z.

opens the possibility for more than one of such states.
This fact can be seen more transparently through the IPR
of the eigenstates. With such purpose in mind, the IPR

P(E,) = 2 [W,(r)[*

was calculated across the band in both the #'=0 and ' #0
cases, with a single central vacancy. Typical results are
shown in Fig. 5. From Fig. 5(a), we do confirm that, when
t'=0, the presence of a vacancy introduces a localized state
at E=0, which is reflected both by the enhanced IPR there,
and by the sharply peaked local density of states (LDOS)
calculated at the vicinity of the vacancy site. Although not
shown in this figure, the amplitude of the peak in the LDOS

at E=0, p;(0), decays as the distance between R; and the
vacancy increases, in total consistence with the analytical
picture. When next-nearest-neighbor hopping is included, we
also confirm the appearance of states with a considerably
enhanced IPR. Not only that, but, instead of one, we do
observe a set of states with [PR much larger than the average
for the remainder of the band. The LDOS is also enhanced
near these energies, although the effect appears as a reso-
nance on account of the finite DOS, in contrast with the
sharp peak in the previous, particle-hole symmetric, case.
A more definite and quantitative analysis is provided by
the results in the subsequent panel [Fig. 5(b)]. Here, we
present the dependence of P(E) on the number of carbon
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FIG. 5. (Color online) IPR and LDOS calculated at one site closest to the vacancy. In panel (a), we have results for the IPR with
t'=0 and ¢’ # 0 without any vacancy (top row) and with a single vacancy (bottom) for comparison. In panel (b), we show the dependence
of the IPR of the zero mode, P(E=0), with the system size N (left), and also (P(E)) versus N for the remainder (extended) states (right).

Dashed lines are guides for the eye.

atoms in the system N. To understand the differences, we
recall that the IPR for extended states should scale as

P(E) ~ ]%,

(20)
However, for the zero mode (it should be obvious that when
the term zero mode is employed, we are referring to the case
with ¢'=0), we face an interesting circumstance. Remember
that wave function (19) is not normalizable. So, strictly
speaking, the state is not localized and hence the designation
quasilocalized that we have adopted above. The consequence
of this is that the normalization constant for W(x,y) depends
on the system size,

N
2 [P (y)P ~ log\N) ~ log(M). 21)

This, in turn, has an effect on the IPR because P(E) is de-
fined in terms of normalized wave functions,

N

2 Wyt~

i

P(0) (22)

" log(V)* log(N)?**
This scaling of the IPR with N is precisely the one obtained
numerically in Fig. 5(b) (left) for the zero mode and is just
another way of confirming the 1/r decay of this wave func-
tion.
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4. Numerical results: Finite concentration of vacancies

Unlike the single vacancy case, the dilution of the honey-
comb via the introduction of a finite concentration of vacan-
cies is not solvable using the analytical expedients employed
in Ref. 26, and numerical calculations become essential in
this case. Our procedure consists in diluting the honeycomb
lattice with a constant concentration of vacancies, which we
call x (x=N,,./N). The diluted sites are chosen at random
and the global DOS, averaged over several vacancy configu-
rations, is calculated afterward. This is clearly a disordered
problem, and we employ the recursive method allowing us to
obtain the DOS for systems with 20007 sites (which is al-
ready of the order of magnitude of the number of atoms in
real mesoscopic samples of graphene studied experimen-
tally). Some results are summarized in Fig. 6. One of the
effects of this disorder is, as always, the softening of the van
Hove singularities (not shown). However, the most signifi-
cant changes occur in the vicinity of the Fermi level [Fig.
6(a)]. In the presence of electron-hole symmetry (¢’ =0), the
inclusion of vacancies brings an increase of spectral weight
to the surroundings of the Dirac point, leading to a DOS
whose behavior for E~0 mostly resembles the results ob-
tained elsewhere within CPA.3! Indeed, for higher dilutions,
there is a flattening of the DOS around the center of the band
just as in CPA. The most important feature, however, is the
emergence of a sharp peak at the Fermi level, superimposed
upon the flat portion of the DOS (apart from the peak, the
DOS flattens out in this neighborhood as x is increased past
the 5% shown here). The breaking of the particle-hole sym-
metry by a finite ' results in the broadening of the peak at
the Fermi energy, and the displacement of its position by an
amount of the order of ¢'. All these effects take place close to
the Fermi energy. At higher energies, the only deviations
from the DOS of a clean system are the softening of the van
Hove singularities and the development of Lifshitz tails (not
shown) at the band edge, both induced by the increasing
disorder caused by the random dilution. The onset of this
high energy regime, where the profile of the DOS is essen-
tially unperturbed by the presence of vacancies, is deter-
mined by e=v/l, with l’vn;rlll/D2 being essentially the aver-
age distance between impurities.

To address the degree of localization for the states near
the Fermi level, the IPR was calculated again via exact di-
agonalization on smaller systems. Results for different values
of ¢’ are shown in Fig. 6(b) for random dilution at 0.5%. One
observes first that P(E) ~3/N for all energies but the Fermi
level neighborhood, as expected for states extended up to the
length scale of the system sizes used in the numerics. Sec-
ond, the IPR becomes significant exactly in the same energy
range where the DOS exhibits the vacancy-induced anoma-
lies discussed above. Clearly, the farther the system is driven
from the particle-hole symmetric case, the weaker the local-
ization effect, as illustrated by the results obtained with ¢’
=0.2¢. To this respect, it is worth mentioning that the mag-
nitude of the strongest peaks in P(E) at t'=0 and ¢'=0.1¢ is
equal to the magnitude of the IPR calculated above for a
single impurity problem. Such behavior of the IPR indicates
the existence of quasilocalized states at the center of the
resonance, induced by the presence of the vacancies. For
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FIG. 6. (Color online) IPR and DOS for the diluted honeycomb
lattice. (a) DOS for selected concentrations x and different values of
t'. (b) IPR for selected values of ¢ using a concentration x=0.5%.
For comparison, the corresponding DOS 1is also plotted in each
case. The concentration of vacancies is x, and only the vicinity of
the Fermi level is shown.

higher doping strengths, the enhancement of P(E) is weaker
in the regions where the DOS becomes flat. This means that
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only the states in the closest vicinity of the Dirac point have
a localized character, which is consistent with the fact that
our results for the averaged DOS qualitatively agree with
CPA in the low-energy region, except closer to E=0, where
we find the peak absent in the CPA description. Notice that,
although our final DOS is always averaged over disorder
configurations, it is exact for each configuration, and there-
fore includes all possible scattering and interference pro-
cesses between electron wave and the scattering centers,
which appear to be crucial at the Dirac point. As discussed in
Ref. 36, many of these processes that are not captured within
CPA become relevant in a narrow vicinity of the Dirac point,
rendering that approximation less justifiable.

In summary, in this section, we saw that a single vacancy
introduces a quasilocalized zero mode. Its presence is en-
sured by the uncompensation between the number of orbitals
in the two sublattices, and a theorem from linear algebra. The
presence of this mode translates in the appearance of a peak
in the LDOS near the vacancy, and in an enhanced IPR for
this state. When we go from one to a macroscopic number of
vacancies, we saw that both the peak and the enhancement of
the IPR persist in the global DOS at Ey.

B. Selective dilution

It is important to recall that the results of the previous
section pertain to lattices that were randomly diluted. During
such process, we expect the number of vacancies in sublat-
tice A to be equal to the number of vacancies in sublattice B,
on average. Strictly speaking, since our original lattices are
always chosen with N4=Np, the fluctuations on the degree of
uncompensation, N,—Np, should scale as 1/+N thus vanish-
ing in the thermodynamic limit. Because of this, in principle,
we would expect the lattices used above to be reasonably
compensated. However, the theorem in Sec. Il A1 only
guarantees the presence of zero modes when the lattice is
uncompensated. It turns out that, notwithstanding our utili-
zation of rather large system sizes, such YN fluctuations are
still significant and the lattices were indeed slightly uncom-
pensated.

This clearly begs the clarification of the origin of the zero
modes in the cases with finite densities of vacancies. Do they
appear only through these fluctuations in the degree of sub-
lattice compensation, or can we have zero modes even with
full compensation? To try to elucidate this, we developed a
controlled approach to this issue in the following. From now
on, we consider only the particle-hole symmetric situation
(r'=0).

1. Complete uncompensation

We have studied the DOS for systems in which only one
of the sublattices was randomly diluted, with a finite concen-
tration of vacancies. In this case, the system has precisely a
number of zero modes that equals the number of vacancies.
Starting from a clean lattice with N=N,+ N, sites, the latter
corresponds to N,=Nx. We should thus expect a 8(E) peak
contributing to the global DOS, with an associated spectral
weight w5 that coincides with the fraction of zero modes,
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FIG. 7. (Color online) Dilution of just one sublattice of the
honeycomb. (a) DOS for different dilution strengths, diluting only
sublattice A. (b) On the left panel, we show a detail of the DOS and
the evolution of the gap with vacancy concentrations. On the right
panel, we plot the dependence of the missing spectral weight on the
band (=1-wg) with x (circles). The continuous line is the best fit
using f(x)=ax/(b—x) to the data represented by the circles. The
coefficients yielding the best fit are ¢=0.997 and 5=0.998, thus
agreeing with the expected result [Eq. (23)].

Nx X

W)= N T T

(23)

Since the total spectral weight is normalized to 1, the spectral
weight at £=0 has to be transferred from the states in the
band. In Fig. 7, we show what is happening. As seen in Fig.
7(a), the selective dilution promotes the appearance of a gap
in the DOS, whose magnitude increases with the amount of
dilution. At the center of the gap, we can only see an enor-
mous peak (not visible in the range used) staying precisely at
E=0, corroborating our expectations regarding the Dirac
delta in the DOS. However, since it appears exactly at E=0,
we cannot resolve numerically its associated spectral weight.
To obtain such spectral weight, we calculated the spectral
weight loss in the remainder of the band. The result and its
variation with the amount of dilution x are displayed in the
right-most frame of Fig. 7(b). A nonlinear fit to the data
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FIG. 8. (Color online) The gap estimated from the numerical
curves in Fig. 7 is plotted against the vacancy concentration x. The
continuous line is a least squares fit to f(x)=ax’.

reveals that the dependence expected from Eq. (23) is indeed
verified by the accord between the fitted curve in Fig. 7(b)
and Eq. (23).

As Fig. 7 shows, the spectral weight is transferred almost
entirely from the low-energy region near Er and from the
high-energy regions at the band edges. This depletion near
E=0 introduces the gap 2F,. A gap implies the existence of
a new energy scale in the problem. Since the hopping ¢ is the
only energy scale in the Hamiltonian, such new scale has to
come from the concentration of vacancies. By dimensional
analysis, such scale is dictated essentially by the average
distance between vacancies (/),
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UF 12
€~ 7 ™ Nyacancies

~\x (B=1). (24)
When the magnitude of the gap found numerically is plotted
against x, we arrive at the curve of Fig. 8. The least squares
fit shown superimposed onto the numerical circles confirms
this assumption, and we arrive at a quite interesting situation,
of having a half-filled, particle-hole symmetric and gapped
system, with a finite concentration of (presumably quasilo-
calized) zero modes at the midgap point.

2. Controlled uncompensation

We now turn to a more controlled approach to the dilution
and uncompensation. For that, we introduce an additional
parameter 7 that measures the degree of uncompensation. As
before, we want to study finite concentrations of vacancies.
This is determined by x in such a way that the number of
vacancies in a lattice with N sites will be N,=Nx. However,
now, the number of vacancies in each sublattice is deter-
mined by

1
Nt= ENx(l +7)

s 1
N = ENx(l -7, (25)

with 0= =< 1. Therefore, the parameter » permits an inter-
polation between completely uncompensated dilution (7
=1) and totally compensated dilution (7=0). Let us look
directly at the results for the DOS, calculated at different x
and 7 and plotted in Fig. 9.

At any concentration x, the following sequence of events
unfolds as 7 decreases from 1 to 0: (i) There is a perfectly

x=0.01
0.1 — T 0.2
— =00 0.15
\ — n=02
— n=04
0.05 | _ [ Zp6 1 01
— n=038
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FIG. 9. (Color online) DOS for the honeycomb lattice using the controlled selective dilution discussed in the text, calculated for different
concentrations of vacancies x and several degrees of uncompensation 7. Only the low-energy region close to the Dirac point is shown.
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defined gap in the limit »=1.0 discussed above; (ii) for 7
=1, a small hump develops at the same energy scale of the
previous gap; (iii) although the gap seems to disappear, it is
clearly visible that when 7= 1, the DOS decays to zero after
the hump in a pseudogaplike manner and is zero at E=0; (iv)
decreasing further 7 toward complete compensation (say, for
7=0.6 and 0.4), this behavior persists, being visible that the
DOS drops to zero at E=0; (v) closer to full compensation
(7=0.1), the DOS seems to display an upward inflection
near E=0 and apparently does not drop to zero. Unfortu-
nately, we are unable to resolve this region numerically with
the desired accuracy. For instance, at higher dilutions x
=0.2, we can still see the curve of 7=0.2 dropping to zero
near E=0.

Naturally that, for all the cases with 7# 0, the existence
of N*—N” zero modes is guaranteed. As before, we inspected
this by calculating the missing spectral weight in the bands
and confirmed that it does agree with the fraction of uncom-
pensated vacancies. Hence, the picture emerging from these
results seems to suggest that, although the gap disappears for
n<1, the DOS still drops to zero at E=0 and might drop in
a singular way as 7 approaches zero. If we separate the con-
tributions of the zero modes to the global DOS from the
contribution of the other states, the consequence of this
would be that, in a compensated lattice (=0), the DOS
associated with the other states would seem to diverge as E
— 0, but would be zero precisely at E=0. Stated in another
way, coming from high energies, we woruld see a decreasing
DOS up to some typical energy e~ vx, at which point it
would turn upward. At very small energies, the DOS would
seem to be diverging but, at some point arbitrarily close to
E=0, it would drop precipitously down to zero. Unfortu-
nately, at the moment the numerical calculations are not so
accurate as to allow the confirmation or dismissal of such
possibility. In fact, the peaks for 7=0.0 are of the same mag-
nitude of the ones found when the dilution is completely
random across the two sublattices [Fig. 6(a)]. So, although
the evidence is compelling toward the affirmative, these re-
sults are still inconclusive as to whether the zero modes dis-
appear in a perfectly compensated diluted lattice or not.

C. Local impurities

Vacancies are local scatterers in the unitary limit. A va-
cancy can be thought as an extreme case of a local potential
U when U— . In this context, we investigated the interme-
diate case characterized by a finite local potential. The
Hamiltonian in this case changes from the pure tight binding
in Eq. (1) to

H=UY, clT,cp -t c:fcj - c:fcj +H.c. (26)
P (i) K9

The first term represents the local potential of magnitude U
at the impurity sites p. These impurity sites belong to the
underlying honeycomb lattice but their space distribution is
random. The concentration of impurities, x=N,/N, is kept
constant and we consider only the case with t'=0 in the
sequel.

Physically, the model summarized in the Hamiltonian of
Eq. (26) could describe the situation in which some of the
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carbon atoms are substituted by a different species. Another
realistic circumstance has to do with the fact that a real
graphene sheet is expected to have some molecules from the
environment adsorbed onto its surface.”> Consequently, even
if the honeycomb lattice of the carbon atoms is not disrupted
with foreign atoms, the presence of adsorbed particles can
certainly induce a local potential at the sites where they
couple to the carbon lattice.

Much of the details of this model can be understood from
the local environment around a single impurity, in which
case exact results and closed formulas are obtainable within
a T-matrix approach.’” Hence, we start by analyzing the
single impurity problem in the honeycomb lattice by taking
into account the full electronic dispersion and calculating the
exact local Green’s functions, which allow the identification
of the main spectral changes introduced by the scattering
potential. Within 7" matrix, the 2 X2 electron Green’s func-
tion is written as

G, =G +2 G T, G . (27)

In the Dyson-like expansion above G is the noninteracting
Green’s function whose matrix elements are denoted by
[GO]:’ﬁ (subscripts superscripts refer to position and sublat-
tice, respectively), and the T matrix, T is formally defined in
terms of the scattering potential V by37-38

T(E) = (28)

1-GV’
Taking Vraf, =UG, 10,004,530, for a potential localized only
on site r=0 of sublattice A, the local Green’s function on that
site reads

[GToo

Goy=——2=.
L B el e

(29)
The function [GO]/S()‘ is simply related to the density of states
per carbon atom in the absence of impurity, p°(E), through

[GE)]N = F(E) - imp"(E). (30)

The knowledge of p’(E) suffices for the determination of
F(E) on account of the analytical properties of G*(E) and the
Kramers—Kronig relations. Moreover, any new poles of the
exact Green’s function can come only from the denominator
in Eq. (29) and are determined by the condition

1-UF(E)=0. (31)

Should this condition be satisfied for £ within the branch cut
of G, the new poles will signal the existence of resonant
states in the band, and bound states of the local potential
otherwise. Since p’(E) is known exactly® (cf., Fig. 3), so is
G°(E) through Eq. (30). The function F(E) is shown in Fig.
10. The profile of this function and the condition above allow
two immediate conclusions without further calculation: (i)
the presence of the local potential induces bound states be-
yond the band continuum and (ii) a resonance appears at low
energies beyond a certain threshold U ., with energy of op-
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FIG. 10. (Color online) Real part of Eq. (30) (top) obtained from
the homogeneous DOS (bottom) through the Kramers—Kronig
relations.

posite sign with respect to the scattering potential, and which
moves toward E=0 as U— .

The latter characteristic is certainly more interesting and
we explore it a little further. To that extent, notice that from
Egs. (29) and (30) follows the interacting LDOS at the im-
purity site,

p’(E)
(1-UF(E) P+ [wUp°(E)}

po(E) = [ (32)

This quantity was calculated using the results of Fig. 10 and
Eq. (32) and, at the same time, using the recursive method
that we have been using so far. The two do coincide, just as
expected since the solution of the single impurity problem is
exact, and on the other hand, the recursive method is exact
for the particular case of the LDOS.?® The LDOS at the site
of the impurity is shown in the top frame of Fig. 11 for
several values of U. The bottom frame shows the same data
divided by the noninteracting DOS, which amounts to re-
placing p°(E) by unity in the numerator of Eq. (32). The
resonance alluded above is visible in both panels through the
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FIG. 11. (Color online) (Top) LDOS at the impurity site [ py(E)]
for different strengths of the scattering potential, as indicated in the
legend. (Bottom) The same data divided by the free DOS [p%(E)].
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FIG. 12. (Color online) (a) Position of the maximum in the
LDOS compared with the roots of Eq. (31). (b) Energy of the bound
state.

marked enhancement of the LDOS in the vicinity of the
Dirac point. The position of the maximum in py(E) differs
slightly from the roots of Eq. (31) due to the modulation
introduced by p°(E) in Eq. (32). This effect is shown in detail
in Fig. 12(a) where the two values are explicitly compared.
In addition, the LDOS also exhibits the Dirac-delta peak as-
sociated with the bound state (not shown in the figure),
whose energy is plotted in Fig. 12(b) as a function of U. It is
worth mentioning that analytical expressions can be obtained
for the resonant condition [Eq. (31)] using the low-energy
Dirac approximation to the electronic dispersion.3!-3

Returning now to our initial goal of populating the lattice
with a finite concentration of local impurities, we expect the
main features of the above analysis to hold to a large extent.
However, new features should also emerge from the possi-
bility of multiple scattering and interference effects in a
multi-impurity environment. Although some of these effects
can be captured within standard approximations to impurity
problems,* we choose to present the exact numerical results
obtained with the recursion technique. Examples of such cal-
culations are shown in Fig. 13, where the global DOS aver-
aged over several configurations of disorder is shown for
different potential strengths and concentrations.

The presence of the local term clearly destroys the
particle-hole symmetry, leading to the asymmetric curves in
the figure. As Fig. 13(a) makes clear, among the features
seen locally for a single impurity (Fig. 11), the ones that
carry to the global DOS of the thermodynamic system with a
finite concentration of impurities are the resonant enhance-
ment of the DOS in the vicinity of the Dirac point, and the
high energy features that dominate beyond the band edge,
and are associated with the impurity states. One verifies that
a finite concentration x generates a sort of impurity band at
scales of the order of U, in accordance with the results in
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FIG. 13. (Color online) DOS of the honeycomb lattice with a finite density of local impurities. (a) shows the DOS for U=12¢ and
different concentrations of impurities (notice the truncation in the horizontal axis). (b) shows a detail of the low-energy region for different

U and x as noted in the different graphs.

Fig. 12(b). This impurity band has an interesting splitted
structure as can be seen in the figure and is completely de-
tached from the main band for U=4t. In Fig. 13(b), we
amplify the low-energy region and display what happens as
U and x vary. At small x and U, the DOS changes only
through a simple translation of the band with the concomi-
tant shift in the Dirac point E, [see the panel in Fig. 13(b)
corresponding to U=1]. This rigid shift of the band at low
disorder is simply a consequence of the rigid band
theorem:*" It states that the form of the DOS in an alloy
system does not change with alloying, other than via a
simple translation as given by first-order perturbation theory.

In our case, the magnitude of this shift is given by

AE = <U2 c;cp> =xU,
P

(33)

where an average over disorder is implied. We can confirm
that the exact numerical results satisfy quantitatively this ex-
pectation by inspection of the data in Fig. 14(a). There, we
plot the position of the minimum in the DOS E}, for several
U and x, being evident that, for the concentrations analyzed,
relation (33) is quite accurately satisfied up to U=3. For
local potentials higher than U=3, the rigid shift of Ej
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FIG. 14. (Color online) (a) Variation of the Dirac point energy
Ep with impurity concentration and strength. The inset shows
Ep/EU as a function of U, in which the curves with U=3 roughly
collapse onto each other. (b) Spectral weight transfer to the impurity
band in the presence of local impurities. The values shown corre-
spond to integration of the global DOS beyond E=4¢ (above the
main band edge, cf., Fig. 13).

breaks down and, in fact, the position of Ej, becomes slightly
ill defined.

We point out that, concurrently with the shift of £}, (and
the band), there is a marked increase in the DOS at Ej, and,
unlike the single impurity case (cf., Fig. 11), the DOS be-
comes finite at £, with increasing concentration. For poten-
tials up to around U=3-4, although relation (33) still holds
for the minimum in the DOS, the DOS starts to exhibit a
characteristic bulge near E=0 on the valence band for a re-
pulsive potential (see the second panel in Fig. 13), signaling
the presence of the resonant states, which for these potentials
are not yet clearly resolved in the spectral density. In fact,
our data point to the existence of a critical potential strength
U~ 1 beyond which the resonant effects set in. Such critical
potential has been recently addressed analytically in Ref. 41,
where it appears as marking the onset of the so-called spec-
trum rearrangement regime.
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Nonetheless, whereas Ej, shifts linearly for moderate po-
tential strengths, the position of the resonance does not vary
significantly with concentration and is only enhanced with an
increasing number of impurities [Fig. 13(b)].

Another noteworthy aspect of this model has to do with
the impurity band that emerges at high energies. Besides the
effects just described, a change in the concentration of im-
purities implies a concomitant redistribution of spectral
weight between the main band and the impurity band. This is
plainly shown in Fig. 14(b) which displays the spectral
weight in the impurity band against the concentration of im-
purities. This spectral weight is calculated by integrating the
DOS in the region [4¢,%0[. As the figure shows, for U= 5t,
the spectral weight of the impurity band saturates at the
value x. This is seen from the fact that, when U= 5t, the
curves collapse onto a single line with unit slope (the auxil-
iary dashed line in the figure), signaling the detachment of
the impurity states from the main band. For those cases, the
spectral weight coincides with the concentration x. It cer-
tainly had to be so because with increasing U the impurity
band drifts to higher energies, eventually disappearing from
the problem in the unitary limit. As discussed previously in
Sec. IIT A, the spectral weight of the main band is decreased
by precisely x, in the presence of a concentration of vacan-
cies of x. This is totally consistent with the fact that the local
impurity interpolates between the clean case and the vacancy
limit.

Finally, is also clear how the vacancy limit (U— )
emerges from the data in Fig. 13 as the resonance approaches
E=0 and becomes more sharply defined. At the same time,
the impurity band is displaced toward higher and higher en-
ergies, eventually projecting out of the problem in the va-
cancy limit.

D. Nondiagonal impurities

Another effect expected with the inclusion of a substitu-
tional impurity in the graphene lattice is the modification of
the hoppings between the new atom and the neighboring
carbons. This happens because the host and substituting at-
oms have different radii because the nature of the orbitals
involved in the conduction band is different or, most likely, a
combination of both. Customary impurities in carbon allot-
ropes are nitrogen, working as a donor, and boron, working
as an acceptor.*? In fact, the selective inclusion of nitrogen
and/or boron impurities in carbon nanotubes is a current
practice in the hope to tune the nanotubes’ electronic
response.*3%

In general, the study of a perturbation in the hopping is
much less studied in problems with impurities than the case
of diagonal, on-site perturbations. In the context of our in-
vestigations, the perturbation in the hopping can, again, be
interpreted as an interpolation between a vacancy and an
impurity. To be more precise, let us introduce the relevant
Hamiltonian,

H=-1> cleis+ toz’c;c[,+5+ H.c. (34)
0,0 p.o

In this case, only the nearest-neighbor hopping is considered.
Without the second term, H above is the Hamiltonian for
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FIG. 15. (Color online) Effect of a single substitutional impurity in the LDOS. In panel (a), we plot the LDOS calculated at the site of
the impurity for the four different values of £, indicated in each frame. In panel (b), the situation is identical but the LDOS is calculated at

the nearest-neighboring site of the impurity.

pure graphene. The last sum is restricted to the impurity sites
p and t, represents a perturbation in the hopping amplitude to
its neighbors. Is plain to see that, when f,=¢, all the impurity
sites turn into vacancies since the hopping thereto is zero. As
a result of that, this model provides another type of interpo-
lation between pure graphene and diluted graphene. An im-
portant difference is that this model can be disordered when
the impurities are placed at random, without breaking
particle-hole symmetry and, in this sense, is qualitatively
much different from the case of local disorder discussed in
the preceding section.

We first look at the LDOS in Fig. 15, which contains
typical results for the local DOS near the impurity, and at the

impurity site itself. Irrespective of whether the LDOS is cal-
culated at or near the impurity, the resulting curves display a
strong resonance in the low-energy region, no bound states
are formed and the curves are symmetrical with respect to
the origin. As 7, increases from zero, two simultaneous modi-
fications in these resonances take place. The first is that they
are clearly enhanced as t, approaches #. The second is its
shift in the direction of the Dirac point, in such a way that,
when #(,=0.91, the peak is already very close to E=0. With
regard to this last point, we systematically investigated the
variation of the peak position in the LDOS at the impurity
site with the value of #;. This dependence, which can be seen
in Fig. 16, is approximately linear and, for #,=0.6, is rea-
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FIG. 16. (Color online) Variation of the energy corresponding to
the peak in the LDOS with the magnitude of #,. The LDOS in
question is the LDOS calculated at the impurity site.

sonably well approximated by the linear function €, =t
—ty. The apparent saturation for smaller 7, is due to the prox-
imity to the van Hove singularity. The study of a single sub-
stitutional impurity has been also undertaken in Ref. 46 with
identical results.

The double-peak structure close to the Dirac point can be
qualitatively understood from the results regarding a va-
cancy. Suppose that one completely severs the hopping be-
tween a given atomic orbital and its immediate neighbors
(i.e., set fo=1). In this case, we are left with an isolated or-
bital with energy £=0 and a vacancy in the honeycomb lat-
tice, which we know also has a zero energy mode. If now £,
is changed slightly, it will cause the hybridization of the two
zero energy modes with the consequent splitting of the en-
ergy level, and hence the double peaked structure of the
LDOS close to the Dirac point.

When we go from one impurity to a finite density of im-
purities x, we obtain a measurable influence in the thermo-
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dynamic limit. Our method in this case, consists in placing
impurities at random positions in the lattice, keeping their
concentration constant. The global DOS, averaged over sev-
eral realizations of disorder, is presented in Fig. 17. For in-
termediate values of f,, the perturbation in the hopping in-
duces a resonance appearing at roughly the same energies, as
the ones found in Fig. 16. The resonance is enhanced at
higher concentrations of impurities and becomes more
sharply defined as 7,— ¢. Interestingly, as can be seen in the
last panels of Fig. 17 and its inset, the resonant peak splits at
higher perturbations. This splitting depends on the concen-
tration of impurities being more pronounced for larger con-
centrations and is a new feature introduced by the finite num-
ber of impurities. As happened already in the case of local
impurities, the exact numerical results have qualitative and
quantitative features that could not be anticipated from cal-
culations with a single impurity within the usual approxima-
tion methods. We would also like to point out the fact that,
from inspection of the above figures, the DOS remains zero
at E=0, notwithstanding the sharp resonances in its vicinity.
Since this model of disorder interpolates between clean
graphene and graphene with vacancies, we are led to a situ-
ation similar to the one encountered in Sec. III B for uncom-
pensated vacancies. As before, it seems that, as the vacancy
limit is approached, the DOS remains zero at the Fermi en-
ergy, despite diverging arbitrarily close to this point, and so
the question of the DOS exactly at E=0 for vacancies lin-
gers. Furthermore, unlike what happens with local impuri-
ties, there is no impurity band nor any high energy features
appearing as ty—t: The action is all on the low energy re-
gions. Strictly speaking, in the limit #y=¢, the impurity sites
become isolated from the carbon network. Hence, those sites
have to be removed from the Hilbert space for a meaningful
physical description of the vacancy case as the limit 7,— ¢
(for local impurities the removal of the impurity sites is akin
to the drift of the impurity band to infinity, carrying the spec-
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0.5~ |— x=005 0.5~
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FIG. 17. (Color online) The DOS corresponding to the model Hamiltonian (34), with a finite density of impurities. The three panels
correspond to different values of the perturbing hopping (7,=0.5, 0.8, 0.9, and 0.95), and within each panel the three curves were obtained
at different concentrations (x=0.01, 0.05, and 0.1). The inset of the bottom panels is a magnification of the region near E=0.
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tral weight associated with the number of the impurities,
which projects out of the problem).

Before closing, just a comment on the physical origin of
this perturbation. In effect, the presence of a substitutional
impurity like NV or B will introduce, simultaneously, a pertur-
bation in the hopping and in the local energy. However, it is
more or less clear from the discussions in the previous sec-
tion that the clearest resonances near E occur when the local
potential U is moderate or high, which is not the case for
boron or nitrogen substituents. For example, in Ref. 47, the
local potential associated with such impurities is U~t,
which, from the results above [e.g., Fig. 13(b)], means that
their signature in the spectral density should be rather feeble
or absent. On the other hand, a perturbation in the hopping of
the order of 0.5¢ should already cause a significant increase
in the Fermi velocity at E=0. Hence, when both are of the
same order of magnitude as the hopping 7, the perturbation in
the hopping should be more significant in dictating the
changes in the low-energy electronic structure in the real
physical system.

IV. CONCLUSIONS

In this paper, we have studied the influence of local dis-
order in the electronic structure of graphene, within the tight-
binding approximation of Eq. (1). We focused on vacancies
in an otherwise perfect graphene plane and the not so ex-
treme cases of local (diagonal) impurities and substitutional
(nondiagonal or both) impurities. In all cases, we saw that
disorder brings dramatic alterations of the spectrum in the
vicinity of the Fermi level. This is highly significant since
many of the peculiar physical properties of graphene stem
from the vanishing of the DOS at the Dirac point.

In the case of vacancies, the DOS features a strong diver-
gence at and close to E=0, which is associated with the
formation of quasilocalized states decaying as ~1/r around
the vacancies, which remain even in the presence of next-
nearest-neighbor hopping. Rather interesting is the particular
case of lattices with uncompensated vacancies, in which case
we found the appearance of a gap at low energies propor-
tional to the concentration x, and the coexistence of localized
zero modes in the middle of this gap. For the extreme limit
of dilution among sites of a given sublattice only, we showed
that the gap is robust, and that a macroscopic number of
quasilocalized zero modes dominates the spectral density in
the middle of the gap. Moreover, these zero modes are
strictly nondispersive as imposed by symmetry and give a
contribution x5(E) to the gapped DOS. This is very interest-
ing, in particular, if one reasons in terms of magnetic insta-
bilities and formation of local magnetic moments. Such
states might be at the origin of local magnetic moments,
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which would explain the magnetism seen experimentally in
the irradiation experiments.m’22 In effect, ab initio calcula-
tions agree in this respect***—for example, Ref. *® shows
the stabilization of local moments of =1.5up per vacancy,
opening the possibility for above room temperature
magnetism—although the nature of the coupling between
these moments and the explanation of such high 7 is still a
matter of debate.’*!

We showed how the vacancy case emerges as the limiting
case of a local impurity. In this case, the exact calculation
with a single impurity problem was presented by taking into
account the full dispersion of the honeycomb lattice. The
results of approximate methods such as CPA were subse-
quently compared with the exact numerical solution of the
problem with finite concentrations of impurities, and we
identified the values of the parameters for which these ap-
proximations qualitatively break down (see also Ref. 41 for a
discussion of the validity of CPA). The discussion of nondi-
agonal impurities provided yet another alternative view of
the interpolation between clean graphene and vacancies, with
relevance for systems with dopants that replace the host car-
bon atoms in the honeycomb lattice. One important aspect of
the results with a finite concentration of these impurities re-
gards the splitting of the low-energy peaks (insets of Fig.
17), which is not captured at a single particle level. The
effect has to do with situations in which substitutional impu-
rities appear close to each other, causing interference and
hybridization effects that lead to the resplitting of the low-
energy resonances. In both cases, the changes observed in
the DOS close to the Dirac point within our tight-binding
approach agree with ab initio calculations using different
types of defects and/or impurities.”>3

Finally, the results provided for the DOS and LDOS are
directly testable in real-life samples through scanning tunnel-
ing spectroscopy techniques and, moreover, the effects on the
global DOS should reflect themselves in the electric trans-
port. For example, one might be able to distinguish whether
the main effect of a substitutional impurity occurs through
the modification of the hopping to its neighbors or through
the introduction of a local potential.

Note added. While preparing this manuscript we became
aware of Ref. 54 with some overlapping results regarding
local impurities.
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